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Aharonov-Bohm effect and gauge invariance 
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Abstract. We study the Aharonov-Bohm effect in a gauge for which the vector potential 
vanishes wherever the magnetic field does. We then show how gauge invariance implies 
the existence of Aharonov-Bohm scattering and excludes solutions recently discussed in 
the literature. 

1. Introduction 

The Aharonov-Bohm ( A B )  effect, which purports to establish the physical importance 
of vector potentials in quantum mechanics (Aharonov and Bohm 1959) remains a 
controversial topic. In  particular, Bocchieri and Loinger (1978) have denied the very 
existence of the AB effect, while Henneberger (1981) has questioned its original 
interpretation by Aharonov and Bohm (1959). Specifically, while Henneberger’s 
solution allows for the existence of the AB effect, it does not lead to AB scattering, 
i.e. the corresponding cross section for scattering of a charged particle off an inacces- 
sible solenoid is zero. An extensive list of references concerning the AB effect and 
its surrounding controversy can be found in the paper by Ruijsenaars (1981) who 
discusses in detail both Aharonov and Bohm’s classical analysis and Henneberger’s 
viewpoint. 

In  this paper we re-examine the problem of quantum mechanical scattering of a 
charged particle off an infinitely long and inaccessible solenoid. In addition to some 
pedagogical remarks concerning the discussion of constants of the motion in Aharonov 
and Bohm’s and Henneberger’s solutions, we wish to show in detail that this problem 
can be studied in a gauge where the vector potential A vanishes wherever the magnetic 
field B does. The unusual feature of the vector potential in our gauge is that it is a 
multivalued function which requires a cut in space and a fibre bundle description. 
Such a description together with gauge invariance implies the existence of the AB 

effect and allows us to reject Henneberger’s solution. A similar gauge was formally 
used by Wilczek (1982a, b) in related problems. 

We organise our work as follows. In 3: 2, we explicitly show how both the particle 
angular momentum Lz and the canonical momentumPo commute with the Hamiltonian 
provided the magnetic field and its first derivative have no discontinuity at the boundary 
of the inaccessible region. Thus, both Aharonov and Bohm’s solution (which quantises 
p e l  and Henneberger’s solution (which quantises L z )  are a priori acceptable. In 3: 3 
we introduce our gauge and discuss why it implies AB scattering. Section 4 contains 
our conclusions. 
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2. Aharonov-Bohm effect and constants of the motion 

In order to study scattering from an inaccessible and infinite solenoid, we introduce 
the usual vector potential defined by 

A Z  = A ,  = 0, 

where r, 8, Z are cylindrical coordinates. 

along the 2 axis, which is only a function of the radius r. 
Formula (1) describes the vector potential corresponding to a magnetic field Bz 

A form of BZ(r )  often considered in the literature is 

Bz = BoH(a - r ) ,  (2) 

where Bo is a constant and H ( x )  is the usual step function. We shall not, however, 
consider Bz to be restricted as in (2).  

The Schrodinger equation for a charged particle of mass m in the field described 
by (1) is 

-- 1 [ -+--- d2 1 d ( p 8  - ~ e r A ~ ) ~ ]  (I, = E $ ,  
2m dr2 r dr (3)  

where we have neglected the trivial Z-dependence and used cylindrical coordinates 
and a system of units such that h = c = 1. The field Bz is assumed to be zero for r > a ,  
where a denotes the radius of the inaccessible cylindrical region. The boundary 
condition at r = a is then 

(I,(a) = 0. (4) 
Using (3 ) ,  we now find, for r E [ a ,  a), 

dBz d 1 dr dr 
-(2mH, AB]  = T + -  -, rAe = 2Bz +r-+2rBz--. 

d2 1 d 
[dr r dr 

From ( 5 ) ,  we find that H and erA, commute on the whole space Y t  of physical states, 
provided both BZ and dBZ/dr vanish at the boundary of the inaccessible region. As 
discussed by Henneberger (1981) and Peshkin (19811, quantisation of p e  would then 
imply the existence of AB scattering, while quantisation of p e  -erA, = Lz  would imply 
its non-existence. Note that, strictly speaking, the magnetic field given by ( 2 ) ,  being 
discontinuous, does not lead to a conserved L z  and implies AB scattering. 

3. Gauge invariance and AB effect 

Instead of ( l ) ,  let us now consider the vector potential defined by 

A '  = -BBzr 

for which we also have 

V x A'  = Bze,. 

It is clear that we can also obtain A'  from (1) by the gauge transformation 

A ' = A  - V ( , i 0 / 2 ~ )  
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where 

, i ( r )  = 277 5,' r'BZ dr' (9) 

is uriivocally fixed by the condition 

A(r = 0) = 0. (10) 

Our potential (6), which vanishes where B does, is a multivalued function. In order 
to treat such functions properly, we must cut the space with a half-plane and work 
in the interval 0 < 8 < 2x.  This cut cannot play any physical role, and if we want to 
define a vector potential in the whole space, we must consider the space as the union 
of two regions 0 < 8 < 2 7  and - x  < 8' < T ,  for instance. In both regions, the potential 
is defined by (6), i.e. in the whole space, the potential is defined by a set of two 
different functions: 

A ;  = -rBZ8, 0 < 8 < 2 ~ ,  (11) 

A ;  = -rBz8', -T < 0' < T .  ( 1 2 )  

The two domains have two intersecting regions R I  and RII defined respectively by 
0 < 8 < x and T < U  < 2x. In RI ,  we have 8 = 8' and Ai = A ; ,  while in RII ,  we have 
8 = O ' i - 2 ~  and 

A ;  =A;-2xrBz  = A ; - V . i  (13) 
where .I is as in (9) and (10). 

Formula (13) shows that in the two intersecting regions, the potential is represented 
by two functions which only differ by a gradient. Such a construction corresponds to 
a definition of the potential that is more general than the usual one (a representation 
by a single function). It is a one-form connection on a principal fibre bundle which, 
in general, is represented by a set of functions defined on different domains such that 
in the intersection of two domains the functions only differ by a gradient. Further 
mathematical details concerning the existence and uniqueness of such one-form 
connections can be found in Daniel and Viallet (1980). In the case of the Dirac 
monopole, this construction is the only possible way to obtain a well defined vector 
potential (Wu and Yang 1975, 1976, 1977). In each domain, we have a different 
Schrodinger equation: 

H,*; =E*:, i = 1, 2 ,  (14) 

H, = ( 2 m ) - * ( p  -CA:)'  (15) 

with 

and we have 

by virtue of gauge invariance. If we wish to solve univocally the Schrodinger equation 
we must impose boundary conditions on the domains - x  < 8 ' <  T or 0 < 8 < 2x. 
Equivalently, we can extend the domain of 8-values to be such that we have 

-00<8<co.  
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provided we impose periodic boundary conditions on 8. According to (16), this 
periodic boundary condition is 

$ ' ( e  + 2 ~ )  = $ ' ( e )  e-i' (17) 

where $'(e)  denotes a solution to the Schrodinger equation with the potential A'  
given by (6). The corresponding boundary conditions for ${ ( e )  and $ ; ( e )  would read 

Note that A in (16), (17) is nothing but the total flux of the magnetic field, as 4 is 
non-zero only for r > a .  

Equation (17) implies 

$ ' (m,  B)aexp[i(m - .1 /2~)e] ,  (18) 

where m is an arbitrary integer and E means 'proportional to'. In  each domain R I  
and R I * ,  we also have 

$;(m, e)aexp[i(m - 1 1 / 2 ~ ) e ]  ( i  = 1, 2). (19) 

If we now come back to the usual gauge (1) through the inverse transformation of 
that given in (8), we obtain for the wavefunctions 

$, (m, e )  0; e"' (i = 1, 2). (20) 

In R I ,  we have $l(m, 0 )  = t+hz(m, e ) ,  while in R I I  we have cLl(m, 0 )  = e2iwm$z(m, 6 )  = 
$*(m, e), since m is an integer. The above manipulations consist in effect in  making 
a global gauge transformation (Daniel and Viallet 1980). From (18) we now get 

$(m, e ) a e r m e  (21) 

where $(m, e )  satisfies equation (3) in gauge (1). In other words, the periodic boundary 
condition (17) uniquely selects the angular dependence in $ ' ( m ,  0 )  and hence in 
$(m, e ) ,  obtained from $'(m, 8 )  through a gauge transformation. The angular depen- 
dence in formula (21) is indeed the one found by Aharonov and Bohm (1959), so 
that in our approach, the solution (zm suggested by Henneberger (1981), i.e. 

(zm(e)xexp[i(m - A / ~ T ) B ] ,  (22) 

is ruled out by gauge invariance. That such a solution must be rejected can also be 
seen when we work with the usual vector potential (1). In that case, due to the 
assumed non-periodicity of the wavefunction (see formula (22)), a fibre bundle formu- 
lation is also needed. Since now A = A Z  everywhere, we must have i,bl = (L2 
everywhere, and the wavefunction is periodic, in contradiction with (22). 

A remark with respect to Stokes' theorem is in order. Clearly, our potential A' 
in (6) violates Stokes' theorem for a curve winding around the 2 axis. However, such 
a curve cannot be drawn as it crosses the cut. Stokes' theorem only (trivially) applies 
to curves which do not cross the cut. 
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4. Conclusions 

We have discussed in detail why, for magnetic fields that are continuous at the boundary 
of the inaccessible region, together with their first derivatives, the Schrodinger equation 
does not lead unambiguously to AB scattering. We then showed, within fibre bundle 
theory, that gauge invariance does lead to the original AB solution and excludes the 
solution proposed by Henneberger (1981). 
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